Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.842
Filtrar
1.
Eur J Pharmacol ; 971: 176556, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38574840

RESUMEN

AIMS: Endothelial-mesenchymal transition (EndMT) is a crucial pathological process contributing to cardiac fibrosis. Bradykinin has been found to protect the heart against fibrosis. Whether bradykinin regulates EndMT has not been determined. MATERIALS AND METHODS: Rats were subjected to ligation of the left anterior descending coronary artery for 1 h and subsequent reperfusion to induce cardiac ischemia-reperfusion (IR) injury. Bradykinin (0.5 µg/h) was infused by an osmotic pump implanted subcutaneously at the onset of reperfusion. Fourteen days later, the functional, histological, and molecular analyses were performed to investigate the changes in cardiac fibrosis and EndMT. Human coronary artery endothelial cells were utilized to determine the molecular mechanisms in vitro. RESULTS: Bradykinin treatment improved cardiac function and decreased fibrosis following cardiac IR injury, accompanied by ameliorated EndMT and increased nitric oxide (NO) production. In vitro experiments found that bradykinin mitigated transforming growth factor ß1 (TGFß1)-induced EndMT. Significantly, the bradykinin B2 receptor antagonist or endothelial nitric oxide synthase inhibitor abolished the effects of bradykinin on EndMT inhibition, indicating that the bradykinin B2 receptor and NO might mediate the effects of bradykinin on EndMT inhibition. CONCLUSION: Bradykinin plays an essential role in the process of cardiac fibrosis. Bradykinin preserves the cellular signature of endothelial cells, preventing them from EndMT following cardiac IR injury, possibly mediated by bradykinin B2 receptor activation and NO production.


Asunto(s)
Cardiomiopatías , Daño por Reperfusión , Humanos , Ratas , Animales , Células Endoteliales , Bradiquinina/farmacología , Bradiquinina/metabolismo , Transición Endotelial-Mesenquimatosa , Cardiomiopatías/metabolismo , Receptores de Bradiquinina/metabolismo , Óxido Nítrico/metabolismo , Daño por Reperfusión/metabolismo , Fibrosis , Transición Epitelial-Mesenquimal
2.
Anal Chem ; 96(16): 6106-6111, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38594830

RESUMEN

This study explores the innovative field of pulsed direct current arc-induced nanoelectrospray ionization mass spectrometry (DCAI-nano-ESI-MS), which utilizes a low-temperature direct current (DC) arc to induce ESI during MS analyses. By employing a 15 kV output voltage, the DCAI-nano-ESI source effectively identifies various biological molecules, including angiotensin II, bradykinin, cytochrome C, and soybean lecithin, showcasing impressive analyte signals and facilitating multicharge MS in positive- and negative-ion modes. Notably, results show that the oxidation of fatty acids using a DC arc produces [M + O - H]- ions, which aid in identifying the location of C═C bonds in unsaturated fatty acids and distinguishing between isomers based on diagnostic ions observed during collision-induced dissociation tandem MS. This study presents an approach for identifying the sn-1 and sn-2 positions in phosphatidylcholine using phosphatidylcholine and nitrate adduct ions, accurately determining phosphatidylcholine molecular configurations via the Paternò-Büchi reaction. With all the advantages above, DCAI-nano-ESI holds significant promise for future analytical and bioanalytical applications.


Asunto(s)
Nanotecnología , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Ionización de Electrospray/métodos , Citocromos c/química , Citocromos c/análisis , Bradiquinina/química , Bradiquinina/análisis , Angiotensina II/química , Angiotensina II/análisis , Fosfatidilcolinas/química , Fosfatidilcolinas/análisis , Glycine max/química
3.
Mol Biol Rep ; 51(1): 499, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598121

RESUMEN

INTRODUCTION: Aerobic physical training (APT) reduces eosinophilic airway inflammation, but its effects and mechanisms in severe asthma remain unknown. METHODS: An in vitro study employing key cells involved in the pathogenesis of severe asthma, such as freshly isolated human eosinophils, neutrophils, and bronchial epithelial cell lineage (BEAS-2B) and lung fibroblasts (MRC-5 cells), was conducted. Additionally, an in vivo study using male C57Bl/6 mice, including Control (Co; n = 10), Trained (Exe; n = 10), house dust mite (HDM; n = 10), and HDM + Trained (HDM + Exe; n = 10) groups, was carried out, with APT performed at moderate intensity, 5x/week, for 4 weeks. RESULTS: HDM and bradykinin, either alone or in combination, induced hyperactivation in human neutrophils, eosinophils, BEAS-2B, and MRC-5 cells. In contrast, IL-10, the primary anti-inflammatory molecule released during APT, inhibited these inflammatory effects, as evidenced by the suppression of numerous cytokines and reduced mRNA expression of the B1 receptor and ACE-2. The in vivo study demonstrated that APT decreased bronchoalveolar lavage levels of bradykinin, IL-1ß, IL-4, IL-5, IL-17, IL-33, TNF-α, and IL-13, while increasing levels of IL-10, klotho, and IL-1RA. APT reduced the accumulation of polymorphonuclear cells, lymphocytes, and macrophages in the peribronchial space, as well as collagen fiber accumulation, epithelial thickness, and mucus accumulation. Furthermore, APT lowered the expression of the B1 receptor and ACE-2 in lung tissue and reduced bradykinin levels in the lung tissue homogenate compared to the HDM group. It also improved airway resistance, tissue resistance, and tissue damping. On a systemic level, APT reduced total leukocytes, eosinophils, neutrophils, basophils, lymphocytes, and monocytes in the blood, as well as plasma levels of IL-1ß, IL-4, IL-5, IL-17, TNF-α, and IL-33, while elevating the levels of IL-10 and IL-1RA. CONCLUSION: These findings indicate that APT inhibits the severe asthma phenotype by targeting kinin signaling.


Asunto(s)
Asma , Bradiquinina , Humanos , Animales , Ratones , Masculino , Interleucina-10 , Proteína Antagonista del Receptor de Interleucina 1 , Interleucina-17 , Interleucina-33 , Interleucina-4 , Interleucina-5 , Factor de Necrosis Tumoral alfa
4.
J Nat Prod ; 87(4): 820-830, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38449376

RESUMEN

Snake venoms contain various bradykinin-potentiating peptides (BPPs). First studied for their vasorelaxant properties due to angiotensin converting enzyme (ACE) inhibition, these molecules present a range of binding partners, among them the argininosuccinate synthase (AsS) enzyme. This has renewed interest in their characterization from biological sources and the evaluation of their pharmacological activities. In the present work, the low molecular weight fraction of Bothrops moojeni venom was obtained and BPPs were characterized by mass spectrometry. Eleven BPPs or related peptides were sequenced, and one of them, BPP-Bm01, was new. Interestingly, some oxidized BPPs were detected. The three most abundant peptides were BPP-Bm01, BPP-Bax12, and BPP-13a, and their putative interactions with the AsS enzyme were investigated in silico. A binding cavity for these molecules was predicted, and docking studies allowed their ranking. Three peptides were synthesized and submitted to vasorelaxation assays using rat aortic rings. While all BPPs were active, BPP-Bm01 showed the highest potency in this assay. This work adds further diversity to BPPs from snake venoms and suggests, for the first time, a putative binding pocket for these molecules in the AsS enzyme. This can guide the design of new and more potent AsS activators.


Asunto(s)
Aorta , Bothrops , Oligopéptidos , Péptidos , Serpientes Venenosas , Animales , Ratas , Brasil , Aorta/efectos de los fármacos , Péptidos/farmacología , Péptidos/química , Bradiquinina/farmacología , Masculino , Venenos de Crotálidos/farmacología , Venenos de Crotálidos/química , Ratas Wistar , Venenos de Serpiente/farmacología , Vasodilatadores/farmacología , Vasodilatadores/química , Estructura Molecular
5.
Nanomedicine ; 57: 102744, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460653

RESUMEN

We recently prepared pH-responsive HPMA copolymer conjugates of bradykinin (P-BK), which release BK in response to the acidic tumor microenvironment, and found that administration of P-BK increased the tumor accumulation and therapeutic efficacy of nanomedicine. Because the release of BK from P-BK determines its onset of action, P-BKs with different release rates were prepared, and their properties were evaluated. The release kinetics were significantly altered by substitution proximal to hydrazone bond, release constant of methyl-substituted P-BK (P-MeBK) was approximately 4- and 80-fold higher than that of cyclopropyl-substituted P-BK (P-CPBK) and phenyl-substituted P-BK (P-PhBK). None of the P-BKs were active, but the release of BK restored their BK-like activity. Pre-administration of the P-BKs increased the tumor accumulation of nanomedicine in C26 tumor-bearing mice by 2- and 1.4-fold for P-MeBK and P-PhBK at 3 and 6 h. Altogether, this study provides insights into the design of pH-responsive nanodrugs with the desired release properties to target acidic lesions such as cancer and inflammation.


Asunto(s)
Neoplasias , Polímeros , Animales , Ratones , Polímeros/química , Doxorrubicina/química , Bradiquinina , Nanomedicina , Concentración de Iones de Hidrógeno , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
6.
Drug Dev Res ; 85(2): e22178, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38528652

RESUMEN

The wingless/integrase-1 (WNT) pathway involved in the pathogenesis of inflammatory airway diseases has recently generated considerable research interest. Montelukast, a leukotriene receptor antagonist, provides therapeutic benefits in allergic asthma involving eosinophils. We aimed to investigate the role of the WNT pathway in the therapeutic actions of montelukast (MT) in a mixed type of allergic-acute airway inflammation model induced by ovalbumin (OVA) and lipopolysaccharide (LPS) in mice. Female mice were sensitized with intraperitoneal OVA-Al(OH)3 administration in the initiation phase and intranasal OVA followed by LPS administration in the challenge phase. The mice were divided into eight groups: control, asthmatic, and control/asthmatic treated with XAV939 (inhibitor of the canonical WNT pathway), LGK-974 (inhibitor of the secretion of WNT ligands), or MT at different doses. The inhibition of the WNT pathway prevented tracheal 5-HT and bradykinin hyperreactivity, while only the inhibition of the canonical WNT pathway partially reduced 5-HT and bradykinin contractions compared to the inflammation group. Therefore, MT treatment hindered 5-HT and bradykinin hyperreactivity associated with airway inflammation. Furthermore, MT prevented the increases in the phosphorylated GSK-3ß and WNT5A levels, which had been induced by airway inflammation, in a dose-dependent manner. Conversely, the MT application caused a further increase in the fibronectin levels, while there was no significant alteration in the phosphorylation of the Smad-2 levels in the isolated lungs of the mice. The MT treatment reversed the increase in the mRNA expression levels of interleukin-17A. An increase in eosinophil and neutrophil counts was observed in bronchoalveolar lavage fluid samples obtained from the mice in the inflammation group, which was hampered by the MT treatment. The inhibition of the WNT pathway did not alter inflammatory cytokine expression or cell infiltration. The WNT pathway mediated the therapeutic effects of MT due to the inhibition of GSK-3ß phosphorylation as well as the reduction of WNT5A levels in a murine airway inflammation model.


Asunto(s)
Acetatos , Asma , Ciclopropanos , Lipopolisacáridos , Quinolinas , Sulfuros , Ratones , Femenino , Animales , Ovalbúmina , Vía de Señalización Wnt , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Serotonina/metabolismo , Bradiquinina/metabolismo , Asma/tratamiento farmacológico , Pulmón/metabolismo , Inflamación/metabolismo , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad , Citocinas/metabolismo
7.
J Chem Theory Comput ; 20(6): 2643-2654, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38465868

RESUMEN

It is well-known that proline (Pro) cis-trans isomerization plays a decisive role in the folding and stabilization of proteins. The conformational coupling between isomerization states of different Pro residues in proteins during conformational adaptation processes is not well understood. In the present work, we investigate the coupled cis-trans isomerization of three Pro residues using bradykinin (BK), a partially unstructured nonapeptide hormone, as a model system. We use a recently developed enhanced-sampling molecular dynamics method (ω-bias potential replica exchange molecular dynamics; ωBP-REMD) that allows us to exhaustively sample all combinations of Pro isomer states and obtain converged probability densities of all eight state combinations within 885 ns ωBP-REMD simulations. In agreement with experiment, the all-trans state is seen to be the preferred isomer of zwitterionic aqueous BK. In about a third of its structures, this state presents the characteristic C-terminal ß-turn conformation; however, other isomer combinations also contribute significantly to the structural ensemble. Unbiased probabilities can be projected onto the peptide bond dihedral angles of the three Pro residues. This unveils the interdependence of the individual Pro isomerization states, i.e., a possible coupling of the different Pro isomers. The cis/trans equilibrium of a Pro residue can change by up to 2.5 kcal·mol-1, depending on the isomerization state of other Pro residues. For example, for Pro7, the simulations indicate that its cis state becomes favored compared to its trans state when Pro2 is switched from the trans state to the cis state. Our findings demonstrate the efficiency of the ωBP-REMD methodology and suggest that the coupling of Pro isomerization states may play an even more decisive role in larger folded proteins subject to more conformational restraints.


Asunto(s)
Bradiquinina , Prolina , Conformación Proteica , Prolina/química , Termodinámica , Proteínas
8.
Am J Case Rep ; 25: e943407, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38414232

RESUMEN

BACKGROUND Angioedema is non-pitting edema that occurs in the deep layers of the skin and subcutaneous tissue due to vascular leakage of plasma resulting from 1 of 2 major pathophysiological processes: mast cell-mediated angioedema and bradykinin-mediated angioedema. While it is a well-recognized adverse reaction of angiotensin-converting enzyme inhibitors, the association of angioedema with angiotensin receptor blockers is relatively less studied. Direct local trauma, although rarely, has been suggested to induce angioedema under certain conditions. We present a unique case of direct, local, trauma-related angioedema in a patient on an angiotensin receptor blocker. CASE REPORT The patient, an 83-year-old woman on telmisartan for hypertension, hit her neck against the edge of a chair during a fall. Shortly thereafter, she developed progressive airway compromise due to airway angioedema, as noted on direct laryngoscopy. A contrast CT scan of the neck also noted edema of the periglottic and supraglottic regions. She required intravenous corticosteroid administration and intubation in the emergency room and was successfully extubated 3 days after admission. She had no prior history of angioedema or allergy. We hypothesize that increased levels of circulatory bradykinin in the setting of telmisartan, combined with a local release of bradykinin from trauma, was the main pathophysiologic cause of the angioedema. CONCLUSIONS This case report highlights the rare and often forgotten adverse reaction of angioedema with use of angiotensin receptor blockers and confirms the finding of local trauma as a possible trigger.


Asunto(s)
Angioedema , Antagonistas de Receptores de Angiotensina , Femenino , Humanos , Anciano de 80 o más Años , Antagonistas de Receptores de Angiotensina/efectos adversos , Telmisartán/efectos adversos , Bradiquinina , Angioedema/inducido químicamente , Intubación , Edema
9.
J Allergy Clin Immunol ; 153(4): 1073-1082, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38300190

RESUMEN

BACKGROUND: Angioedema is a rare but potentially life-threatening adverse drug reaction in patients receiving angiotensin-converting enzyme inhibitors (ACEis). Research suggests that susceptibility to ACEi-induced angioedema (ACEi-AE) involves both genetic and nongenetic risk factors. Genome- and exome-wide studies of ACEi-AE have identified the first genetic risk loci. However, understanding of the underlying pathophysiology remains limited. OBJECTIVE: We sought to identify further genetic factors of ACEi-AE to eventually gain a deeper understanding of its pathophysiology. METHODS: By combining data from 8 cohorts, a genome-wide association study meta-analysis was performed in more than 1000 European patients with ACEi-AE. Secondary bioinformatic analyses were conducted to fine-map associated loci, identify relevant genes and pathways, and assess the genetic overlap between ACEi-AE and other traits. Finally, an exploratory cross-ancestry analysis was performed to assess shared genetic factors in European and African-American patients with ACEi-AE. RESULTS: Three genome-wide significant risk loci were identified. One of these, located on chromosome 20q11.22, has not been implicated previously in ACEi-AE. Integrative secondary analyses highlighted previously reported genes (BDKRB2 [bradykinin receptor B2] and F5 [coagulation factor 5]) as well as biologically plausible novel candidate genes (PROCR [protein C receptor] and EDEM2 [endoplasmic reticulum degradation enhancing alpha-mannosidase like protein 2]). Lead variants at the risk loci were found with similar effect sizes and directions in an African-American cohort. CONCLUSIONS: The present results contributed to a deeper understanding of the pathophysiology of ACEi-AE by (1) providing further evidence for the involvement of bradykinin signaling and coagulation pathways and (2) suggesting, for the first time, the involvement of the fibrinolysis pathway in this adverse drug reaction. An exploratory cross-ancestry comparison implicated the relevance of the associated risk loci across diverse ancestries.


Asunto(s)
Angioedema , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Inhibidores de la Enzima Convertidora de Angiotensina/efectos adversos , Estudio de Asociación del Genoma Completo , Angioedema/inducido químicamente , Angioedema/genética , Bradiquinina
10.
Heart Fail Rev ; 29(3): 729-737, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38381277

RESUMEN

Heart failure (HF) is a pervasive clinical challenge characterized by compromised cardiac function and reduced quality of life. The kinin-kallikrein system (KSS), a multifaceted peptide cascade, has garnered substantial attention due to its potential role in HF. Through activation of B1 and/or B2 receptors and downstream signaling, kinins modulate various physiological processes, including inflammation, coagulation, pain, blood pressure control, and vascular permeability. Notably, aberrations in KKS components have been linked to HF risk. The elevation of vasodilatory bradykinin (BK) due to kallikrein activity reduces preload and afterload, while concurrently fostering sodium reabsorption inhibition. However, kallikrein's conversion of prorenin to renin leads to angiotensinsII upregulation, resulting in vasoconstriction and fluid retention, alongside increased immune cell activity that fuels inflammation and cardiac remodeling. Importantly, prolonged KKS activation resulting from volume overload and tissue stretch contributes to cardiac collagen loss. The conventional renin-angiotensin-aldosterone system (RAAS) inhibitors used in HF management may inadvertently intensify KKS activity, exacerbating collagen depletion and cardiac remodeling. It is crucial to balance the KKS's role in acute cardiac damage, which may temporarily enhance function and metabolic parameters against its detrimental long-term effects. Thus, KKS blockade emerges as a promising strategy to impede HF progression. By attenuating the link between immune system function and tissue damage, KKS inhibition can potentially reduce cardiac remodeling and alleviate HF symptoms. However, the nuanced roles of BK in various acute conditions necessitate further investigation into the sustained benefits of kallikrein inhibitors in patients with chronic HF.


Asunto(s)
Insuficiencia Cardíaca , Sistema Calicreína-Quinina , Calicreínas , Cininas , Sistema Renina-Angiotensina , Humanos , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Sistema Calicreína-Quinina/fisiología , Cininas/metabolismo , Calicreínas/metabolismo , Sistema Renina-Angiotensina/fisiología , Sistema Renina-Angiotensina/efectos de los fármacos , Transducción de Señal , Bradiquinina/metabolismo
11.
Am J Emerg Med ; 79: 33-37, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38340480

RESUMEN

BACKGROUND: Angiotensin converting enzyme inhibitors (ACE-Is) prevent the breakdown of bradykinin and can lead to life threatening angioedema. Tranexamic acid is an antifibrinolytic that inhibits formation of precursors involved in bradykinin synthesis and, in case reports, has been described as a potential treatment for ACE-I angioedema. METHODS: This retrospective study included patients who presented to the emergency department (ED) from January 2018 to August 2021 with angioedema while taking an ACE-I. Patients who received tranexamic acid (treatment group) were compared with patients who did not receive tranexamic acid (control group). Primary outcome was length of stay (LOS). Secondary outcomes evaluated included ICU admissions, intubations, and safety events. RESULTS: A total of 262 patients were included in this study (73 treatment; 189 control). Overall, the median ED LOS was longer in the treatment group than controls (20.9 h vs 4.8 h, p < 0.001). ICU admission rates were higher in the treatment group (45% vs 16%, p < 0.001). More patients were intubated in the treatment group (12% vs 3%, p = 0.018). No difference was seen between the treatment group and the controls for return within 7 days, complications related to thrombosis, and death. In patients presenting with severe angioedema symptoms who were admitted to the hospital, median LOS was not different between the two groups (58.7 h vs 55.7 h, p = 0.61). CONCLUSIONS: Patients who received tranexamic acid had increased ED LOS, rates of ICU admission, and need for intubation. This finding may be related to the severity of presentation. Administration of tranexamic acid appears safe to use in ACE-I angioedema. Prospective randomized controlled studies should be considered to determine whether tranexamic acid is an effective treatment for ACE-I angioedema.


Asunto(s)
Angioedema , Ácido Tranexámico , Humanos , Inhibidores de la Enzima Convertidora de Angiotensina/efectos adversos , Ácido Tranexámico/uso terapéutico , Estudios Retrospectivos , Bradiquinina/uso terapéutico , Estudios Prospectivos , Angioedema/inducido químicamente , Angioedema/tratamiento farmacológico
12.
Cell Commun Signal ; 22(1): 118, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347539

RESUMEN

BACKGROUND: Disruption of Ca2+ homeostasis after calcium electroporation (CaEP) in tumors has been shown to elicit an enhanced antitumor effect with varying impacts on healthy tissue, such as endothelium. Therefore, our study aimed to determine differences in Ca2+ kinetics and gene expression involved in the regulation of Ca2+ signaling and homeostasis, as well as effects of CaEP on cytoskeleton and adherens junctions of the established endothelial cell lines EA.hy926 and HMEC-1. METHODS: CaEP was performed on EA.hy926 and HMEC-1 cells with increasing Ca2+ concentrations. Viability after CaEP was assessed using Presto Blue, while the effect on cytoskeleton and adherens junctions was evaluated via immunofluorescence staining (F-actin, α-tubulin, VE-cadherin). Differences in intracellular Ca2+ regulation ([Ca2+]i) were determined with spectrofluorometric measurements using Fura-2-AM, exposing cells to DPBS, ionomycin, thapsigargin, ATP, bradykinin, angiotensin II, acetylcholine, LaCl3, and GdCl3. Molecular distinctions were identified by analyzing differentially expressed genes and pathways related to the cytoskeleton and Ca2+ signaling through RNA sequencing. RESULTS: EA.hy926 cells, at increasing Ca2+ concentrations, displayed higher CaEP susceptibility and lower survival than HMEC-1. Immunofluorescence confirmed CaEP-induced, time- and Ca2+-dependent morphological changes in EA.hy926's actin filaments, microtubules, and cell-cell junctions. Spectrofluorometric Ca2+ kinetics showed higher amplitudes in Ca2+ responses in EA.hy926 exposed to buffer, G protein coupled receptor agonists, bradykinin, and angiotensin II compared to HMEC-1. HMEC-1 exhibited significantly higher [Ca2+]i changes after ionomycin exposure, while responses to thapsigargin, ATP, and acetylcholine were similar in both cell lines. ATP without extracellular Ca2+ ions induced a significantly higher [Ca2+]i rise in EA.hy926, suggesting purinergic ionotropic P2X and metabotropic P2Y receptor activation. RNA-sequencing analysis showed significant differences in cytoskeleton- and Ca2+-related gene expression, highlighting upregulation of ORAI2, TRPC1, TRPM2, CNGA3, TRPM6, and downregulation of TRPV4 and TRPC4 in EA.hy926 versus HMEC-1. Moreover, KEGG analysis showed upregulated Ca2+ import and downregulated export genes in EA.hy926. CONCLUSIONS: Our finding show that significant differences in CaEP response and [Ca2+]i regulation exist between EA.hy926 and HMEC-1, which may be attributed to distinct transcriptomic profiles. EA.hy926, compared to HMEC-1, displayed higher susceptibility and sensitivity to [Ca2+]i changes, which may be linked to overexpression of Ca2+-related genes and an inability to mitigate changes in [Ca2+]i. The study offers a bioinformatic basis for selecting EC models based on research objectives.


Asunto(s)
Acetilcolina , Calcio , Calcio/metabolismo , Acetilcolina/metabolismo , Acetilcolina/farmacología , Angiotensina II/farmacología , Bradiquinina/farmacología , Ionomicina/metabolismo , Ionomicina/farmacología , Tapsigargina/metabolismo , Línea Celular , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Perfilación de la Expresión Génica , Electroporación , Adenosina Trifosfato/metabolismo
13.
Viruses ; 16(2)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38400022

RESUMEN

Microcirculatory and coagulation disturbances commonly occur as pathological manifestations of systemic viral infections. Research exploring the role of the kallikrein-kinin system (KKS) in flavivirus infections has recently linked microvascular dysfunctions to bradykinin (BK)-induced signaling of B2R, a G protein-coupled receptor (GPCR) constitutively expressed by endothelial cells. The relevance of KKS activation as an innate response to viral infections has gained increasing attention, particularly after the reports regarding thrombogenic events during COVID-19. BK receptor (B2R and B1R) signal transduction results in vascular permeability, edema formation, angiogenesis, and pain. Recent findings unveiling the role of KKS in viral pathogenesis include evidence of increased activation of KKS with elevated levels of BK and its metabolites in both intravascular and tissue milieu, as well as reports demonstrating that virus replication stimulates BKR expression. In this review, we will discuss the mechanisms triggered by virus replication and by virus-induced inflammatory responses that may stimulate KKS. We also explore how KKS activation and BK signaling may impact virus pathogenesis and further discuss the potential therapeutic application of BKR antagonists in the treatment of hemorrhagic and respiratory diseases.


Asunto(s)
COVID-19 , Sistema Calicreína-Quinina , Humanos , Células Endoteliales/metabolismo , Microcirculación , Bradiquinina
14.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38397016

RESUMEN

The effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on the coagulation system is not fully understood. SARS-CoV-2 penetrates cells through angiotensin-converting enzyme 2 (ACE2) receptors, leading to its downregulation. Des-arginine9-bradykinin (DA9B) is degraded by ACE2 and causes vasodilation and increased vascular permeability. Furthermore, DA9B is associated with impaired platelet function. Therefore, the aim of this study was to evaluate the effects of DA9B on platelet function and coagulopathy in critically ill coronavirus disease 2019 (COVID-19) patients. In total, 29 polymerase-positive SARS-CoV-2 patients admitted to the intensive care unit of the University Hospital of Giessen and 29 healthy controls were included. Blood samples were taken, and platelet impedance aggregometry and rotational thromboelastometry were performed. Enzyme-linked immunosorbent assays measured the concentrations of DA9B, bradykinin, and angiotensin 2. Significantly increased concentrations of DA9B and angiotensin 2 were found in the COVID-19 patients. A negative effect of DA9B on platelet function and intrinsic coagulation was also found. A sub-analysis of moderate and severe acute respiratory distress syndrome patients revealed a negative association between DA9B and platelet counts and fibrinogen levels. DA9B provokes inhibitory effects on the intrinsic coagulation system in COVID-19 patients. This negative feedback seems reasonable as bradykinin, which is transformed to DA9B, is released after contact activation. Nevertheless, further studies are needed to confirm our findings.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Bradiquinina/farmacología , Bradiquinina/metabolismo , Enzima Convertidora de Angiotensina 2 , Enfermedad Crítica , Angiotensinas
15.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38338764

RESUMEN

The kallikrein-kinin system is a versatile regulatory network implicated in various biological processes encompassing inflammation, nociception, blood pressure control, and central nervous system functions. Its physiological impact is mediated through G-protein-coupled transmembrane receptors, specifically the B1 and B2 receptors. Dopamine, a key catecholamine neurotransmitter widely distributed in the CNS, plays a crucial role in diverse physiological functions including motricity, reward, anxiety, fear, feeding, sleep, and arousal. Notably, the potential physical interaction between bradykinin and dopaminergic receptors has been previously documented. In this study, we aimed to explore whether B2R modulation in catecholaminergic neurons influences the dopaminergic pathway, impacting behavioral, metabolic, and motor aspects in both male and female mice. B2R ablation in tyrosine hydroxylase cells reduced the body weight and lean mass without affecting body adiposity, substrate oxidation, locomotor activity, glucose tolerance, or insulin sensitivity in mice. Moreover, a B2R deficiency in TH cells did not alter anxiety levels, exercise performance, or motor coordination in female and male mice. The concentrations of monoamines and their metabolites in the substantia nigra and cortex region were not affected in knockout mice. In essence, B2R deletion in TH cells selectively influenced the body weight and composition, leaving the behavioral and motor aspects largely unaffected.


Asunto(s)
Receptor de Bradiquinina B2 , Tirosina 3-Monooxigenasa , Ratones , Masculino , Femenino , Animales , Receptor de Bradiquinina B2/genética , Receptor de Bradiquinina B2/metabolismo , Tirosina 3-Monooxigenasa/genética , Bradiquinina/farmacología , Receptor de Bradiquinina B1/metabolismo , Peso Corporal , Ratones Noqueados
16.
Sci Rep ; 14(1): 1140, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212417

RESUMEN

Patients with Parkinson's disease (PD) have gastrointestinal motility disorders, which are common non-motor symptoms. However, the reasons for these motility disorders remain unclear. Increased alpha-synuclein (α-syn) is considered an important factor in peristalsis dysfunction in colonic smooth muscles in patients with PD. In this study, the morphological changes and association between serping1 and α-syn were investigated in the colon of the 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine-induced chronic PD model. Increased serping1 and α-syn were noted in the colon of the PD model, and decreased serping1 also induced a decrease in α-syn in C2C12 cells. Serping1 is a major regulator of physiological processes in the kallikrein-kinin system, controlling processes including inflammation and vasodilation. The kinin system also comprises bradykinin and bradykinin receptor 1. The factors related to the kallikrein-kinin system, bradykinin, and bradykinin receptor 1 were regulated by serping1 in C2C12 cells. The expression levels of bradykinin and bradykinin receptor 1, modulated by serping1 also increased in the colon of the PD model. These results suggest that the regulation of increased serping1 could alleviate Lewy-type α-synucleinopathy, a characteristic of PD. Furthermore, this study could have a positive effect on the early stages of PD progression because of the perception that α-syn in colonic tissues is present prior to the development of PD motor symptoms.


Asunto(s)
Enfermedades Gastrointestinales , Enfermedad de Parkinson , Animales , Humanos , Ratones , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , alfa-Sinucleína/metabolismo , Bradiquinina/farmacología , Proteína Inhibidora del Complemento C1 , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Receptores de Bradiquinina
17.
Basic Clin Pharmacol Toxicol ; 134(3): 345-360, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38009541

RESUMEN

Transient receptor potential vanilloid type-1 (TRPV1) channels play key roles in chronic pain conditions and are modulated by different inflammatory mediators to elicit heat sensitisation. Bradykinin is a 9-amino acid peptide chain that promotes inflammation. The aim of present study is to investigate how bradykinin and prostaglandin receptors (EP3 and EP4 ) modulate the sensitisation of TRPV1-mediated responses. Calcium imaging studies of rat dorsal root ganglion (DRG) neurons were employed to investigate the desensitizing responses of TRPV1 ion channels by capsaicin, and the re-sensitization of TRPV1 by bradykinin, then to explore the role EP3 and EP4 receptors in mediating these bradykinin-dependent effects. Immunocytochemistry was used to study the co-expression and distribution of EP4, TRPV1, COX-1 and B2 in rat DRG neurons. Desensitization was seen upon repeated capsaicin application, we show that bradykinin-mediated sensitization of capsaicin-evoked calcium responses in rat DRG neurons occurs is dependent on COX-1 activity and utilizes a pathway that involves EP4 but not EP3 receptors. Immunocytochemical techniques revealed that EP4, TRPV1, COX-1 and B2 proteins are expressed mainly in small diameter (<1000 µm2 ) cell bodies of rat DRG neurons which are typically nociceptors. The present study provides suggestive evidence for a potential signalling pathway through which bradykinin may regulate TRPV1 ion channel function via EP4 receptors. In addition to confirming existing knowledge, the anatomical distribution and colocalization of these proteins in DRG neurons as revealed by this study offer valuable insight.


Asunto(s)
Capsaicina , Subtipo EP4 de Receptores de Prostaglandina E , Ratas , Animales , Capsaicina/farmacología , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Bradiquinina/farmacología , Ratas Sprague-Dawley , Ganglios Espinales/metabolismo , Calcio/metabolismo , Canales Catiónicos TRPV/metabolismo , Neuronas/metabolismo , Células Cultivadas
18.
Blood ; 143(7): 641-650, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37992228

RESUMEN

ABSTRACT: Hereditary angioedema (HAE) is associated with episodic kinin-induced swelling of the skin and mucosal membranes. Most patients with HAE have low plasma C1-inhibitor activity, leading to increased generation of the protease plasma kallikrein (PKa) and excessive release of the nanopeptide bradykinin from high-molecular-weight kininogen (HK). However, disease-causing mutations in at least 10% of patients with HAE appear to involve genes for proteins other than C1-inhibitor. A point mutation in the Kng1 gene encoding HK and low-molecular weight kininogen (LK) was identified recently in a family with HAE. The mutation changes a methionine (Met379) to lysine (Lys379) in both proteins. Met379 is adjacent to the Lys380-Arg381 cleavage site at the N-terminus of the bradykinin peptide. Recombinant wild-type (Met379) and variant (Lys379) versions of HK and LK were expressed in HEK293 cells. PKa-catalyzed kinin release from HK and LK was not affected by the Lys379 substitutions. However, kinin release from HK-Lys379 and LK-Lys379 catalyzed by the fibrinolytic protease plasmin was substantially greater than from wild-type HK-Met379 and LK-Met379. Increased kinin release was evident when fibrinolysis was induced in plasma containing HK-Lys379 or LK-Lys379 compared with plasma containing wild-type HK or LK. Mass spectrometry revealed that the kinin released from wild-type and variant kininogens by PKa is bradykinin. Plasmin also released bradykinin from wild-type kininogens but cleaved HK-Lys379 and LK-Lys379 after Lys379 rather than Lys380, releasing the decapeptide Lys-bradykinin (kallidin). The Met379Lys substitutions make HK and LK better plasmin substrates, reinforcing the relationship between fibrinolysis and kinin generation.


Asunto(s)
Angioedemas Hereditarios , Bradiquinina , Humanos , Lisina , Angioedemas Hereditarios/genética , Fibrinolisina , Metionina , Células HEK293 , Quininógenos , Calicreínas/genética , Racemetionina
19.
Pain ; 165(1): 202-215, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37703419

RESUMEN

ABSTRACT: Bradykinin is a peptide implicated in inflammatory pain in both humans and rodents. In rodent sensory neurons, activation of B1 and B2 bradykinin receptors induces neuronal hyperexcitability. Recent evidence suggests that human and rodent dorsal root ganglia (DRG), which contain the cell bodies of sensory neurons, differ in the expression and function of key GPCRs and ion channels; whether bradykinin receptor expression and function are conserved across species has not been studied in depth. In this study, we used human DRG tissue from organ donors to provide a detailed characterization of bradykinin receptor expression and bradykinin-induced changes in the excitability of human sensory neurons. We found that B2 and, to a lesser extent, B1 receptors are expressed by human DRG neurons and satellite glial cells. B2 receptors were enriched in the nociceptor subpopulation. Using patch-clamp electrophysiology, we found that acute bradykinin increases the excitability of human sensory neurons, whereas prolonged exposure to bradykinin decreases neuronal excitability in a subpopulation of human DRG neurons. Finally, our analyses suggest that donor's history of chronic pain and age may be predictors of higher B1 receptor expression in human DRG neurons. Together, these results indicate that acute bradykinin-induced hyperexcitability, first identified in rodents, is conserved in humans and provide further evidence supporting bradykinin signaling as a potential therapeutic target for treating pain in humans.


Asunto(s)
Bradiquinina , Receptores de Bradiquinina , Humanos , Bradiquinina/metabolismo , Ganglios Espinales/metabolismo , Nociceptores/metabolismo , Dolor , Receptores de Bradiquinina/metabolismo , Células Receptoras Sensoriales/metabolismo
20.
Mol Neurobiol ; 61(3): 1627-1642, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37740866

RESUMEN

Anastrozole, an aromatase inhibitor, induces painful musculoskeletal symptoms, which affect patients' quality of life and lead to therapy discontinuation. Efforts have been made to understand the mechanisms involved in these painful symptoms to manage them better. In this context, we explored the role of the Transient Receptor Potential Vanilloid 4 (TRPV4), a potential transducer of several nociceptive mechanisms, in anastrozole-induced musculoskeletal pain in mice. Besides, we evaluated the possible sensibilization of TRPV4 by signalling pathways downstream, PLC, PKC and PKCε from kinin B2 (B2R) and B1 (B1R) receptors activation in anastrozole-induced pain. Anastrozole caused mechanical allodynia and muscle strength loss in mice. HC067047, TRPV4 antagonist, reduced the anastrozole-induced mechanical allodynia and muscle strength loss. In animals previously treated with anastrozole, the local administration of sub-nociceptive doses of the TRPV4 (4α-PDD or hypotonic solution), B2R (Bradykinin) or B1R (DABk) agonists enhanced the anastrozole-induced pain behaviours. The sensitizing effects induced by local injection of the TRPV4, B2R and B1R agonists in animals previously treated with anastrozole were reduced by pre-treatment with TRPV4 antagonist. Furthermore, inhibition of PLC, PKC or PKCε attenuated the mechanical allodynia and muscle strength loss induced by TRPV4, B2R and B1R agonists. The generation of painful conditions caused by anastrozole depends on direct TRPV4 activation or indirect, e.g., PLC, PKC and PKCε pathways downstream from B2R and B1R activation. Thus, the TRPV4 channels act as sensors of extracellular and intracellular changes, making them potential therapeutic targets for alleviating pain related to aromatase inhibitors use, such as anastrozole.


Asunto(s)
Antineoplásicos , Canales Catiónicos TRPV , Humanos , Ratones , Animales , Anastrozol , Hiperalgesia/inducido químicamente , Calidad de Vida , Receptor de Bradiquinina B1/metabolismo , Receptor de Bradiquinina B2/metabolismo , Dolor/tratamiento farmacológico , Bradiquinina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA